Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Jin Yong Park

Hallym University,
South Korea

Title: Hybrid water treatment process of alumina ceramic ultrafi ltration and PP beads with air backfl ushing: Effect of pH and polypropylene beads

Biography

Biography: Jin Yong Park

Abstract

For advanced water treatment, effects of pH and pure PP beads packing concentration on membrane fouling and treatment efficiency were observed in a hybrid process of alumina ceramic MF and pure PP beads. The tubular UF membrane (NCMT-5231) with pore size 0.05 μm was manufactured by α-alumina in nanopore materials. The diameter of PP beads was 4-6 mm, and the synthetic feed was prepared with humic acid and kaolin. The synthetic feed was allowed to flow inside the MF membrane and the permeated contacted the PP beads fluidized in the gap of the membrane and the acryl module case with outside UV irradiation. Periodic air back-flushing was performed to control membrane fouling during 10 sec (BT, back flushing time) per 10 min (FT, filtration time). These results were compared with the previous studies. The membrane fouling resistance (Rf) was minimum at 50 g/L of PP beads concentration. Finally the maximum total permeate volume (VT) was acquired at 50 g/L of PP beads. It means that the membrane fouling could be controlled by PP beads at 50 g/L. The treatment efficiency of turbidity decreased slightly from 99.4-99.0% as PP beads concentration decrease; however, that of dissolved organic materials (DOM) decreased dramatically from 87.8-73.9% as decreasing PP beads concentration. It means that more PP beads could adsorb or photo-oxidize DOM more effectively. The Rf increased as increasing pH of feed as compared and the maximum VT was acquired at pH 5.1. It means that the membrane fouling could be inhibited at low acid condition. The treatment efficiency of turbidity was almost constant independent of pH; however, that of DOM was the maximum at pH 6.5. It means that the DOM could be removed more excellently at the low alkali condition.